Abstract

1SP0350V are single-channel drivers with fiber-optics. The drivers are based on Power Integrations’ SCALE™-2 chipset, a highly integrated technology for the reliable driving and safe operation of IGBTs and IEGTs.

Perfectly matched driver versions are available for Press-Packs and IGBT modules. The plug-and-play capability of the driver allows immediate operation after mounting. The user needs invest no effort in designing or adjusting it to a specific application.

Fig. 1 1SP0350V Plug-and-Play driver
Contents

System Overview ... 4

The Five Steps to Success .. 5
 1. Choose a suitable driver ... 5
 2. Attach the drivers to the IGBT modules (one driver per IGBT module) 5
 3. Connect the driver to the control electronics .. 5
 4. Check the driver function .. 5
 5. Set up and test the power stack ... 5

Mechanical Dimensions .. 6

Recommended Cables and PCB Connectors ... 7

Pin Designation of Connector X1 (Power Supply of 1SP0350V) .. 7

Recommended Interface Circuitry for Connector X1 ... 7

Description of Interface X1 .. 8
 General ... 8
 VDC terminal ... 8
 SO (Status output power supply) .. 8

Description of the Fiber-Optic Input .. 8

Description of the Fiber-Optic Output ... 8

Recommended Interface Circuitry for Fiber Optics ... 10

How Do 1SP0350V SCALE-2 Gate Drivers Work in Detail? .. 11
 Overview .. 11
 Power supply and electrical isolation ... 11
 Power-supply monitoring .. 11
 3-level or multilevel topologies .. 11
 V_{CE} monitoring / short-circuit protection .. 12
 Dynamic behavior of IGBTs ... 12
 Turn-on of the IGBT / commutation of diode current .. 12
 Turn-off of the IGBT .. 13
 Dynamic Advanced Active ClampingDA²C ... 13
 Low-inductance layout ... 15
 Higher requirements for traction applications or similar ... 15

References ... 16

The Information Source: SCALE-2 Driver Data Sheets ... 17

Quite Special: Customized SCALE-2 Drivers ... 17
Target Description & Application Manual

Technical Support .. 17
Quality .. 17
Legal Disclaimer ... 17
Ordering Information ... 18
Information about Other Products .. 18
Power Integrations Sales Offices ... 19
System Overview

The 1SP0350V are plug-and-play gate drivers based on the highly integrated SCALE-2 chipset developed by Power Integrations /1/. This is a set of application-specific integrated circuits (ASICs) that cover the main range of functions needed to design intelligent gate drivers. The SCALE-2 driver chipset is a further development of the proven SCALE technology /2/.

1SP0350V drivers are specifically designed for the reliable and safe driving of high-voltage and high-power Press-Packs and IGBT modules from the 4500V voltage class.

The basic topology of the 1SP0350V drivers is shown in Fig. 2. The values for the gate resistors and other key components can be found in the driver data sheet /3/.

Fig. 2 Basic schematic of the 1SP0350V gate drivers

The gate driver contains all necessary components for optimal and safe driving of the relevant IGBT module: smallest recommended gate resistors in order to minimize switching losses, gate clamping, active-clamping diodes (overvoltage protection at turn-off), Vce monitoring (short-circuit protection) as well as the electrical and fiber-optic connectors. Moreover, it includes components for setting the turn-off trip level and the response time. Its plug-and-play capability means that it is ready to operate immediately after mounting. The user needs invest no effort in designing or adjusting the driver to a specific application.
The Five Steps to Success

The following steps point out the easy way to use 1SP0350V gate drivers in power converters:

1. Choose a suitable driver

When applying 1SP0350V gate drivers, you should note that they are specifically adapted to a particular type of IGBT module.

These drivers are not valid for IGBT modules other than those specified. Incorrect use may result in failure.

2. Attach the drivers to the IGBT modules (one driver per IGBT module)

Any handling of IGBT modules or drivers is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards).

If these specifications are ignored, both IGBTs and drivers may be damaged.

The driver can be easily mounted onto an IGBT module by connecting over cables the corresponding terminals.

3. Connect the driver to the control electronics

Connect the driver plug X1 to your control electronics and supply the driver with a voltage of +15V. Connect the fiber-optic transmitter and receiver.

4. Check the driver function

Check the gate voltage: For the off-state, the nominal gate voltage is specified in the relevant data sheet /3/. For the on-state, it is +15V. Also check the input current consumption of the driver according to its data sheet /3/ without clock signals and at the desired switching frequency.

These tests should be performed before installation, as the gate terminals may otherwise not be accessible.

5. Set up and test the power stack

Before starting up the system, it is recommended that each IGBT module be checked separately under power-cycling conditions. It is usually sufficient to apply the single or double-pulse technique. Power Integrations specially recommends users to check that the IGBT modules switch inside the SOA in the worst case condition.

Even if only single IGBTs are tested, all the system’s gate drivers must be supplied with energy. All the other IGBTs are then kept in the off state by applying negative gate voltages. This is particularly important when switching the IGBTs under test.

The short-circuit behavior can also be verified at this point.

The system is then ready to start under real-world load conditions. This allows the thermal behavior of the whole arrangement to be determined.
The system must be re-qualified over the entire specified range of temperature and load conditions.

CAUTION: All handling with high voltages involves risk to life. It is imperative to comply with the respective safety regulations!

Mechanical Dimensions

![Mechanical Dimensions Diagram](image-url)

Fig. 3 Mechanical dimensions of 1SP0350V
Recommended Cables and PCB Connectors

The following cables and PCB connectors for the interfaces X1 (power-supply terminal) and X2 (gate, emitter and collector terminals) are recommended:

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Recommended plug</th>
<th>Recommended cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>CIF03005 (Sauro)</td>
<td>-</td>
</tr>
<tr>
<td>X2GE</td>
<td>3421-7600 (3M)</td>
<td>20-pole ribbon cable (Length ≤150mm)</td>
</tr>
<tr>
<td>X2G, X2E, X2C</td>
<td>-</td>
<td>Gate-emitter twisted (Cable length ≤150mm)</td>
</tr>
</tbody>
</table>

Note that X2C carries high potential referred to X2GE, X2G and X2E. Moreover, the X2GE, X2G, X2E and X2C cables may also carry high potential referred to the primary side (e.g. X1). The cables must be isolated to comply with the required insulation coordination.

Pin Designation of Connector X1 (Power Supply of 1SP0350V)

<table>
<thead>
<tr>
<th>Pin Des.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDC +15V</td>
</tr>
<tr>
<td>2</td>
<td>GND Ground</td>
</tr>
<tr>
<td>3</td>
<td>SO Status DC/DC converter</td>
</tr>
</tbody>
</table>

Recommended Interface Circuitry for Connector X1

![Recommended User Interface of 1SP0350V](image-url)
Description of Interface X1

General

The driver is equipped with a 3-pin interface connector. Pin 2 is used as GND connection. Pin 1 is used for the +15V voltage supply. Pin 3 is used as a status output to monitor the supply voltage VDC.

VDC terminal

The driver has one VDC terminal on the interface connector to supply the DC-DC converters for the secondary sides.

The VDC terminal must be connected to a single +15V power supply. The driver limits the inrush current at startup, and no external current limitation of the voltage source for VDC is needed.

SO (Status output power supply)

When no primary-side under-voltage condition is detected, an internal pull-up resistor of 10kΩ keeps the output level at the voltage level of VDC. When a primary-side supply under-voltage is detected, the status output SO goes to low (connected to GND). The SO output is automatically reset (returning to the voltage level of VDC) when the under-voltage on the primary side disappears.

The maximum SO current in a fault condition must not exceed the value specified in the driver data sheet /3/.

Note that the SO output is automatically reset about 50ms after the supply undervoltage fault disappears.

If not used, the SO output can be left open.

Description of the Fiber-Optic Input

This is the drive (command signal) input.

Description of the Fiber-Optic Output

During normal operation (i.e. the driver is supplied with power at nominal voltage, and there is no fault anywhere), the status feedback is given by a “light on” at the optical link. A malfunction is signaled by a “light off”.

Each edge of the control signal is acknowledged by the driver with a short pulse (the light is off for a period of $t_{(ack)}$). Because this can be observed by the host controller, this method allows simple and continuous monitoring of all drivers and fiber-optic links of the system. Fig. 5 shows the control and response signals of a gate driver in normal operation.
Fig. 5 Driver behavior and status feedback in normal operation

Fig. 6 shows the response of the driver in the event of a short-circuit fault (Jumper J1 set to the position "2-level"). The fault status is transferred to the status feedback terminal after the response time. The light is then driven "off" during the delay to clear the fault state \(t_{\text{delay}} \). The driver shuts the IGBT off with a delay of \(t_{\text{shd}} \) after the response time. Refer to /3/ for timing information. The IGBT can be turned on again by applying a positive edge to the corresponding fiber-optic input after the fault status has disappeared.

Fig. 6 Driver behavior and status feedback in the short-circuit condition (Jumper J1 set at the position "2-level")

In case of a secondary-side supply under-voltage fault, the fault status remains active as long as this under-voltage remains. The driver response in the event of a supply under-voltage on VISO-VE is shown in Fig. 7.
Fig. 7 Status feedback in the event of a supply undervoltage

During power-up, the status feedback will also show a fault condition until the supply under-voltage protection disappears.

Recommended Interface Circuitry for Fiber Optics

The recommended circuitry for the fiber-optic links is given in Fig. 8.

![Recommended circuitry for fiber-optic links](image)

Fig. 8 Recommended circuitry for the fiber-optic links
How Do 1SP0350V SCALE-2 Gate Drivers Work in Detail?

Overview

The 1SP0350V series of plug-and-play single-channel drivers is designed for high-power and high-voltage IGBT modules and Press-Packs. 1SP0350V SCALE-2 drivers are equipped with the usual protection functions such as dynamic V_{CE} monitoring for short-circuit protection, supply-undervoltage shutdown and status feedback.

Outstanding features of 1SP0350V SCALE-2 drivers are: Dynamic Advanced Active Clamping function DA²C and a very low propagation delay time. Active clamping describes an active scheme designed to protect the IGBTs against overvoltage during turn-off. It is particularly relevant when turning an IGBT off in cases of high DC-link voltage and collector current or short circuit.

Power supply and electrical isolation

The driver is equipped with a DC/DC converter to provide an electrically insulated power supply to the gate driver circuitry. The transformer features basic insulation according to IEC 61800-5-1 between the primary and secondary sides.

Note that the driver requires a stabilized supply voltage.

Power-supply monitoring

The driver’s primary and secondary sides are equipped with a local under-voltage monitoring circuit.

In the event of a primary-side supply under-voltage, the under-voltage is signalized by the electrical status output SO. A primary-side under-voltage will not automatically cause a gate turn-off command. This condition has to be detected by the control logic which has to switch off and block the gate drive signal.

In case of a secondary-side supply under-voltage, the corresponding power semiconductor is driven with a negative gate voltage after the delay in IGBT turn-off to keep it in the off-state (the channel is blocked) and a fault condition is monitored on the fiber-optic status feedback with the light off until the supply voltage exceeds the reference level for enabling (Jumper J1 set at the position “2-level”).

3-level or multilevel topologies

In applications with multi-level topologies, the turn-off sequence of the individual power semiconductors usually needs to be controlled by the host controller in case of a detected fault condition (e.g. short circuit, over-current).

This function is not available in current driver version. The jumper J1 position “3-level” should therefore not be used. It will be available for later series production.
A V_{CE} monitoring circuit is implemented in 1SP0350V gate drivers. The IGBT collector-emitter voltage is measured with a resistor network.

V_{CE} is checked after the response time (Fig. 9) at turn-on to detect a short circuit. If this voltage is higher than the programmed threshold V_{th}, the driver detects a short circuit at the IGBT and signals it immediately to the fiber-optic status feedback. After an additional delay, the corresponding IGBT is switched off (Jumper J1 not set at the position “2-level” as shown in Fig. 12). The fault feedback is automatically reset after the delay to clear the fault state. The IGBT is turned on again as soon as the next positive edge is applied to the fiber-optic input after the fault status has disappeared.

The dynamic V_{CE} monitoring circuit allows the V_{CE} curve form to be given a better fit.

It should be noted that the response time is dependent on the DC-link voltage. It remains constant between about 50% to 100% of the maximum DC-link voltage and increases at lower DC-link voltages. Please read the relevant driver data sheet for timing information /3/.

Note: The desaturation function is for short-circuit detection only and cannot provide overcurrent protection. However, overcurrent detection has a lower time priority and can be easily provided by the application.

Dynamic behavior of IGBTs

The dynamic behavior of IGBT modules depends on their type and manufacturer due to the specific behavior of the included IGBT and diode chips, the particular module construction and the distribution of the internal gate resistances and inductances. Note that different module types from the same manufacturer may also require a specific gate-driver adaptation.

Power Integrations therefore supplies specific versions of SCALE-2 plug-and-play drivers adapted to the particular IGBT module. These drivers must not be used with IGBT modules other than those for which they were specified.

Turn-on of the IGBT / commutation of diode current

When a driver input goes high (light on), the gate driver turns on the corresponding IGBT.

The driver is optimized to achieve minimum switching losses for the case of relatively low inductances within the power stack. It is recommended to check the commutation behavior within the final system assembly.
Turn-off of the IGBT

The IGBT is turned off when the corresponding input turns low (light off). The gate resistors are recommended by Power Integrations and must not be altered.

Fast turn-off of the IGBT may cause overvoltage, which increases with DC-link voltage or load current. The turn-off overvoltage can be approximated by:

\[V_{tr} = -L_s \cdot \frac{di_c}{dt} \]

where \(V_{tr} \) is the turn-off overvoltage, \(i_c \) the collector current and \(L_s \) the stray inductance.

Overvoltage limitation at turn-off is essential for high-power or high-voltage IGBTs. To solve this problem, SCALE-2 plug-and-play drivers provide a Dynamic Advanced Active Clamping function DA\(^2\)C which is described below.

Dynamic Advanced Active Clamping DA\(^2\)C

Active clamping is a technique designed to partially turn on the IGBT in case the collector-emitter voltage exceeds a predefined threshold. The IGBT is then kept in linear operation. The basic circuit for active clamping can be found in /4/.

Basic active-clamping topologies implement a single feedback path from the IGBT’s collector through transient voltage suppressor devices (TVS) to the IGBT gate. 1SP0350V SCALE-2 drivers support Power Integrations’ Dynamic Advanced Active Clamping (DA\(^2\)C) based on this principle:

- When active clamping is activated, the turn-off MOSFET of the driver is switched off in order to improve the effectiveness of the active clamping and to reduce the losses in the TVS. This feature – called Advanced Active Clamping – is mainly integrated in the secondary-side ASIC.

- Additional transient voltage suppressors (TVS) have been added in series to the TVS required to withstand the maximum DC-link voltage under switching operation. These TVS are short-circuited during the IGBT on state as well as during about 15-20\(\mu\)s after the turn-off command to guarantee efficient active clamping. After this delay, these additional TVS are activated and allow the DC-link voltage to be increased to a higher value during the IGBT off-state (e.g. after emergency shut-down). This feature – together with Advanced Active Clamping – is called Dynamic Advanced Active Clamping DA\(^2\)C. Note that the time during which the voltage can be applied above the value for switching operation should be limited to short periods (< 60 seconds).
In comparison with other driving methods, active clamping allows enhanced utilization of the IGBT modules during normal operation by increasing the switching speed and therefore reducing switching losses. The overvoltage at turning off an overcurrent is also managed by active clamping.

The value of the maximum DC-link voltage under switching operation and in IGBT off state can be found in the corresponding driver data sheet /3/.

Fig. 11 shows an exemplary turn-off transition of a 3000A/4500V IGBT module controlled with a 1SP0350V driver.
Low-inductance layout

The active-clamping function should not lead anyone to forget about the inductances of the power stack. For several reasons, it is still necessary to reduce the DC-link stray inductance to about 50nH...200nH with 1SP0350V plug-and-play drivers.

Higher requirements for traction applications or similar

The power-supply interface X1 as well as the IGBT-module steering connector X2GE provide a mechanical interlock and are suitable for traction applications.

For sufficient vibration withstand capability the 1SP0350V SCALE-2 driver must be screw fitted onto a mounting plate (see red marked mounting holes in Fig. 12 and corresponding dimensions in Fig. 3). **However, it should be noted that these connections must be electrically insulated to comply with the particular clearance and creepage distance requirements (e.g. use of plastic distance bolts).**

Furthermore, an interlocking version of the fiber optic links is available.
Fig. 12 Measures for fixing the driver (red). Position of jumper J1 (outline highlighted).

References

/1/ Paper: Smart Power Chip Tuning, Bodo’s Power Systems, May 2007
/2/ Description and Application Manual for SCALE™ Drivers, Power Integrations
/3/ Data sheets of SCALE™-2 plug-and-play driver 1SP0350V2A1-45, Power Integrations
/4/ Paper: Advantages of Advanced Active Clamping, Power Electronics Europe, Nov/Dec 2009

Note: The papers are available on the Internet at www.power.com/igbt-driver/go/papers.
Target Description & Application Manual

The Information Source: SCALE-2 Driver Data Sheets

Power Integrations offers the widest selection of gate drivers for power MOSFETs and IGBTs for almost any application requirements. The largest website on gate-drive circuitry anywhere contains all data sheets, application notes and manuals, technical information and support sections: www.power.com.

Quite Special: Customized SCALE-2 Drivers

If you need an IGBT driver that is not included in the delivery range, please don’t hesitate to contact Power Integrations or your Power Integrations’ sales partners.

Power Integrations has more than 25 years experience in the development and manufacture of intelligent gate drivers for power MOSFETs and IGBTs and has already implemented a large number of customized solutions.

Technical Support

Power Integrations provides expert help with your questions and problems:

www.power.com/igbt-driver/go/support

Quality

The obligation to high quality is one of the central features laid down in the mission statement of Power Integrations Switzerland GmbH. Our total quality management system assures state-of-the-art processes throughout all functions of the company, certified by ISO9001:2008 standards.

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.
Target Description & Application Manual

Ordering Information

Our international terms and conditions of sale apply.
See the current list on www.power.com/igbt-driver/go/1SP0350V.
Refer to www.power.com/igbt-driver/go/nomenclature for information on driver nomenclature.

Information about Other Products

For drivers adapted to other high-voltage or high-power IGBT modules

Direct link: www.power.com/igbt-driver/go/Plug-and-Play

For other drivers, evaluation systems, product documentation and application support

Please click onto: www.power.com/igbt-driver
Target Description & Application Manual

Power Integrations Sales Offices

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-9200
Fax: +1-408-414-9765
Email: usasales@power.com

AMERICAS EAST
7360 McGinnis Ferry Road
Suite 225
Suwannee, GA 30024 USA
Tel: +1-678-957-0724
Fax: +1-678-957-0784
Email: usasales@power.com

AMERICAS WEST
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-8776
Fax: +1-408-414-3760
Email: usasales@power.com

GERMANY (AC-DC/LED Sales)
Lindwurmstrasse 114
80337 München, Germany
Tel: +49-89-5527-39100
Fax: +49-89-1228-5374
Email: eurosales@power.com

CHINA (Shanghai)
Room 2410, Charity Plaza
No. 88 North Caoxi Road
Shanghai, 200030 China
Tel: +86-21-6354-6323
Fax: +86-21-6354-6325
Email: chinasales@power.com

CHINA (Shenzhen)
17/F, Hivac Building, No 2
Keji South 8th Road, Nanshan District
Shenzhen, 518057 China
Tel: +86-755-8672-8689
Fax: +86-755-8672-8690
Email: chinasales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 1
59469 Ense, Germany
Tel: +49-2938-64-39990
Email: igbt-driver.sales@power.com

INDIA (Bangalore)
#1, 14th Main Road
Vasantnagar
Bangalore, 560052 India
Tel 1: +91-80-4113-8020
Tel 2: +91-80-4113-8028
Fax: +91-80-4113-8023
Email: indiasales@power.com

INDIA (Mumbai)
Unit: 106-107, Sagar Tech Plaza-B
Sakinaka, Andheri Kurla Road
Mumbai, Maharashtra 400072 India
Tel 1: +91-22-4003-3700
Tel 2: +91-22-4003-3600
Email: indiasales@power.com

INDIA (New Dehli)
#45, Top Floor
Okhla Industrial Area, Phase - III
New Dehli, 110020 India
Tel 1: +91-11-4055-2351
Tel 2: +91-11-4055-2353
Email: indiasales@power.com

JAPAN
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama, Kohoku-ku
Yokohama-shi, Kanagawa
Japan 222-0033
Tel: +81-45-471-1021
Fax: +81-45-471-3717
Email: japansales@power.com

KOREA
RM602, 6FL, 22
Teheran-ro 87-gil, Gangnam-gu
Seoul, 06164 Korea
Tel: +82-2-2016-6610
Fax: +82-2-2016-6630
Email: koreasales@power.com

ITALY
Via Milanese 20
20099 Sesto San Giovanni (MI), Italy
Tel: +39-02-4550-8708
Email: eurosales@power.com

SINGAPORE
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Tel 1: +65-6358-2160
Tel 2: +65-6358-4480
Fax: +65-6358-2015
Email: singaporesales@power.com

TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, 114 Taiwan
Tel: +886-2-2659-4570
Fax: +886-2-2659-4550
Email: taiwansales@power.com

UNITED KINGDOM
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge, CB4 1YG United Kingdom
Tel: +44-7823-557-484
Email: eurosales@power.com