1SP0335x2x1-FZ750R65KE3 and 1SP0335x2x1C-FZ750R65KE3
Data Sheet

Compact, high-performance, plug-and-play single-channel IGBT driver based on SCALE™-2 technology for individual and parallel-connected modules in 2-level, 3-level and multilevel converter topologies

Abstract

The SCALE™-2 plug-and-play driver 1SP0335x2x1-FZ750R65KE3 / 1SP0335x2x1C-FZ750R65KE3 (Coated version using ELPEGUARD SL 1307 FLZ/2 from Lackwerke Peters) is a compact single-channel intelligent gate driver designed for Infineon’s IGBTs FZ750R65KE3(T). The master driver 1SP0335x2M1(C)-FZ750R65KE3 features a fiber-optic interface. It can be used as stand-alone driver or in conjunction with up to three 1SP0335D2S1(C)-FZ750R65KE3 slaves to drive up to four parallel-connected IGBT modules of type FZ750R65KE3(T).

The DC/DC power supply must be purchased as a separate unit (one per master driver).

For drivers adapted to other types of high-power and high-voltage IGBT modules, refer to:
www.power.com/igbt-driver/go/plug-and-play

Features

✓ Plug-and-play solution
✓ Allows parallel connection of IGBT modules
✓ For 2-level, 3-level and multilevel topologies
✓ Fiber-optic links (master)
✓ Built-in interface to 1SP0335D2S1 (slave)
✓ Duty cycle 0...100%
✓ Dynamic Advanced Active Clamping DA³C
✓ Dynamic IGBT short-circuit protection
✓ Monitoring of supply voltage
✓ Monitoring of gate voltage
✓ Extremely reliable; long service life
✓ Shortens application development time
✓ Suitable for FZ750R65KE3(T)

Applications

✓ Traction
✓ Railroad power supplies
✓ Light rail vehicles
✓ HVDC
✓ Flexible AC transmission systems (FACTS)
✓ Medium-voltage converters
✓ Industrial drives
✓ Wind-power converters
✓ Medical applications
✓ Research
✓ And many others

www.power.com/igbt-driver
Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and common data that apply to the whole series, please refer to the “Description & Application Manual for 1SP0335 SCALE-2 IGBT Drivers” on www.power.com/igbt-driver/go/1SP0335.

When applying SCALE-2 plug-and-play drivers, please note that these drivers are specifically adapted to a particular type of IGBT module. Therefore, the type designation of SCALE-2 plug-and-play drivers also includes the type designation of the corresponding IGBT module. These drivers are not valid for IGBT modules other than those specified. Incorrect use may result in failure.

Mechanical Dimensions

Dimensions: Refer to the relevant “Description and Application Manual”

Mounting principle: Connected to IGBT module with screws

Fiber-Optic Interfaces (1SP0335x2M1(C))

<table>
<thead>
<tr>
<th>Interface</th>
<th>Remarks</th>
<th>Part type #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive signal input</td>
<td>1SP0335V, fiber-optic receiver (Notes 1, 2)</td>
<td>HFBR-2522ETZ</td>
</tr>
<tr>
<td>Drive signal input</td>
<td>1SP0335S, fiber-optic receiver (Notes 1, 2)</td>
<td>HFBR-2412Z</td>
</tr>
<tr>
<td>Status output</td>
<td>1SP0335V, fiber-optic transmitter (Notes 1, 3)</td>
<td>HFBR-1522ETZ</td>
</tr>
<tr>
<td>Status output</td>
<td>1SP0335S, fiber-optic transmitter (Notes 1, 3)</td>
<td>HFBR-1412Z</td>
</tr>
</tbody>
</table>

Electrical Connectors

<table>
<thead>
<tr>
<th>Interface</th>
<th>Remarks</th>
<th>Part type #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply connector X1</td>
<td>On-board connector (Note 4)</td>
<td>214012</td>
</tr>
<tr>
<td>Bus connectors X2 and X3</td>
<td>On-board connectors (Note 5)</td>
<td>214013</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Remarks</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{DC}</td>
<td>VDC to COM</td>
<td>0</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Average supply current I_{DC}</td>
<td>1SP0335x2M1(C) only (Note 6)</td>
<td></td>
<td>215</td>
<td>mA</td>
</tr>
<tr>
<td>Average supply current I_{DC}</td>
<td>1SP0335x2M1(C) with three 1SP0335D2S1 (Note 6)</td>
<td>740</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Gate output power</td>
<td>1SP0335x2M1(C), $T_a < 70^\circ$C (Note 7)</td>
<td>3.5</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>1SP0335x2M1(C), $T_a = 85^\circ$C (Note 7)</td>
<td>2.5</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Gate output power</td>
<td>1SP0335D2S1(C), $T_a < 70^\circ$C (Note 8)</td>
<td>3.3</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>1SP0335D2S1(C), $T_a = 85^\circ$C (Note 8)</td>
<td>2.3</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Switching frequency f</td>
<td>1SP0335x2M1(C), $T_a < 70^\circ$C</td>
<td>4.9</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>1SP0335x2M1(C), $T_a = 85^\circ$C</td>
<td>3.4</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Switching frequency f</td>
<td>1SP0335D2S1(C), $T_a < 70^\circ$C</td>
<td>4.6</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>1SP0335D2S1(C), $T_a = 85^\circ$C</td>
<td>3.1</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Gate peak current I_{out}</td>
<td>Note 9</td>
<td>-35</td>
<td>+35</td>
<td>A</td>
</tr>
<tr>
<td>DC-link voltage</td>
<td>Switching operation (Note 10)</td>
<td>4400</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Off state (Note 11)</td>
<td>5200</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Collector-emitter voltage</td>
<td>6500</td>
<td></td>
<td>V_{peak}</td>
</tr>
<tr>
<td>Max. emitter-emitter voltage</td>
<td>Between parallel connected drivers (Note 12)</td>
<td>200</td>
<td></td>
<td>V_{peak}</td>
</tr>
<tr>
<td>$</td>
<td>dV/dt</td>
<td>$</td>
<td>Between parallel connected drivers (Note 13)</td>
<td>50</td>
</tr>
<tr>
<td>Max. interface current</td>
<td>X2 and X3, total RMS value (Note 14)</td>
<td>4</td>
<td></td>
<td>A_{rms}</td>
</tr>
<tr>
<td></td>
<td>X2 and X3, total peak value (Note 14)</td>
<td>20</td>
<td></td>
<td>A_{peak}</td>
</tr>
<tr>
<td>Operating temperature</td>
<td></td>
<td></td>
<td>-40</td>
<td>85</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Note 28</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>Only 1SP0335x2x1C-FZ750R65KE3 (Note 29)</td>
<td></td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{DC}</td>
<td>To COM</td>
<td>23.5</td>
<td>25</td>
<td>26.5</td>
<td>V</td>
</tr>
</tbody>
</table>
Electrical Characteristics

All data refer to +25°C and $V_{\text{DC}} = 25\text{V}$ unless otherwise specified.

Power Supply

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without load, only 1SP0335x2M1(C)</td>
<td>45</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without load, per additional 1SP0335D2S1(C)</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Supply Monitoring

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{iso} Clear fault</td>
<td>12.1</td>
<td>12.6</td>
<td>13.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{ee} Set fault (Note 15)</td>
<td>11.5</td>
<td>12.0</td>
<td>12.5</td>
<td>V</td>
</tr>
<tr>
<td>Set/clear fault</td>
<td>0.35</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{e_ee} Clear fault</td>
<td>5</td>
<td>5.15</td>
<td>5.3</td>
<td>V</td>
</tr>
<tr>
<td>Set fault (Note 15)</td>
<td>4.7</td>
<td>4.85</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Set/clear fault</td>
<td>0.15</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bus to 1SP0335D2S1(C)

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>To COM</td>
<td>VDC</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To COM</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To COM</td>
<td>15</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gate Monitoring

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{\text{GE,off}}$ to E, set fault (Note 16)</td>
<td>12.9</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{GE,off}}$ to E, set fault (Note 16)</td>
<td>-7.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on (Note 16)</td>
<td>28</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off (Note 16)</td>
<td>42</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-circuit Protection

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between auxiliary terminals (Note 17)</td>
<td>247</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{DC-link}} = 4400\text{V}$ (Note 18)</td>
<td>5.9</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{DC-link}} = 3000\text{V}$ (Note 18)</td>
<td>6</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{DC-link}} = 2200\text{V}$ (Note 18)</td>
<td>6.4</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{DC-link}} = 1500\text{V}$ (Note 18)</td>
<td>10.2</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After the response time (Note 19)</td>
<td>0.3</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timing Characteristics

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note 20</td>
<td>Turn-on delay t_{on}</td>
<td>190</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Note 20</td>
<td>Turn-off delay t_{off}</td>
<td>185</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>G to E (Note 21)</td>
<td>Output rise time $t_{\text{r(out)}}$</td>
<td>9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>G to E (Note 21)</td>
<td>Output fall time $t_{\text{f(out)}}$</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
Data Sheet

Timing Characteristics	Remarks	Min	Typ	Max	Unit
Transmission delay of fault state	Note 22	90	ns		
Delay to clear fault state	After IGBT short circuit (Note 23)	9	μs		
After gate-monitoring fault (Notes 23, 27)	1	μs			
Acknowledge delay time | Note 24 | 250 | ns |
Acknowledge pulse width | On host side | 400 | 700 | 1050 | ns |

Gate Output	Remarks	Min	Typ	Max	Unit
Turn-on gate resistor $R_{g(on)}$ | Note 25 | 1 | Ω |
Turn-off gate resistor $R_{g(off)}$ | Note 25 | 7.7 | Ω |
Auxiliary gate capacitor C_{ge} | not assembled | nF |
Gate voltage at turn-on | Note 26 | 15 | V |
Gate-voltage at turn-off | Note 26 | -10 | V |

Footnotes to the Key Data

1) The transceivers required on the host controller side are not supplied with the gate driver. It is recommended to use the same types as used in the gate driver. For product information refer to www.power.com/igbt-driver/go/fiberoptics.
2) The recommended transmitter current at the host controller is 20mA. A higher current may increase jitter or delay at turn-off.
3) The typical transmitter current at the gate driver is 18mA. In case of supply undervoltage, the minimum transmitter current at the gate driver is 12mA: this is suitable for adequate plastic optical fibers with a length of up to 10 meters.
4) This refers to the manufacturer ordering number, see www.power.com/igbt-driver/go/terni. The customer-side connector as well as cables with different lengths can be supplied by Power Integrations. Refer to the “Description & Application Manual for 1SP0335 SCALE-2 IGBT Drivers” for more information.
5) This refers to the manufacturer ordering number, see www.power.com/igbt-driver/go/terni. These connectors are to be used to connect 1SP0335x2M1(C) (master) or 1SP0335D2S1(C) (slave) to 1SP0335D2S1(C) (slave) if parallel connection of IGBT modules is required. Cables with different lengths can be supplied by Power Integrations. Refer to the “Description & Application Manual for 1SP0335 SCALE-2 IGBT Drivers” for more information.
6) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload.
7) The given power can only be fully exploited without slaves 1SP0335D2S1(C) (no parallel connection of IGBT modules). If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data.
8) The given power can be fully exploited with slaves 1SP0335D2S1(C) (parallel connection of IGBT modules). If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data.
9) The gate current is limited by the gate resistors located on the driver.
10) This limit is due to active clamping under switching conditions. Refer to the “Description & Application Manual for 1SP0335 SCALE-2 IGBT Drivers”.
11) Due to the Dynamic Active Advanced Clamping Function (DA²C) implemented on the driver, the DC-link voltage can be increased in the off-state condition (e.g. after emergency shut-down). This value is only valid when the IGBTs are in the off state (not switching). The time during which the voltage can be applied should be limited to short periods (< 60 seconds). Refer to the “Description & Application Manual for 1SP0335 SCALE-2 IGBT Drivers”.

www.power.com/igbt-driver
12) The maximum dynamic voltage between auxiliary emitters of parallel-connected drivers due to asymmetrical operation at turn-on and turn-off must be limited to the given value.

13) Maximum allowed rate of change of auxiliary emitter voltage of parallel connected drivers.

14) Dynamic voltages between auxiliary emitters of parallel connected drivers at turn-on and turn-off lead to equalizing currents over the X2 or X3 bus. The peak and RMS values of the resulting current must be limited to the given value.

15) Undervoltage monitoring of the secondary-side supply voltage (Viso to Vee and Vee to COM which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit on 1SP0335x2M1(C) (masters), all paralleled IGBTs (master and slaves) are switched off and a fault is transmitted to the status output. If the corresponding voltage drops below this limit on 1SP0335D2S1(C) (slaves), the corresponding IGBT is switched off. If the IGBT was turned on, a fault will be generated by the gate-monitoring function on the master which will turn off all paralleled IGBT after the corresponding delay.

16) The mean value $V_{GE,\text{mean}}$ of all gate voltages (master and all slaves) is filtered and compared to the given values at turn-on and turn-off. If the specified values are exceeded ($V_{GE,\text{mean}} < V_{GE,\text{on,min}}$ at turn-on resp. $V_{GE,\text{mean}} > V_{GE,\text{off,max}}$ at turn-off) after the given filter delay, the driver turns off all parallel-connected IGBTs and a fault is transmitted to the status output.

17) A dynamic Vce protection is implemented on the driver. The maximum allowed Vce voltage at turn-on is dynamically adjusted in order to better fit to the IGBT characteristics at turn-on. At the end of the turn-on process the given static value applies.

18) The resulting pulse width of the direct output of the gate drive unit for short-circuit type I (excluding the delay of the gate resistors) is the sum of the response time plus the delay to IGBT turn-off.

19) The turn-off event of the IGBT is delayed by the specified time after the response time.

20) Including the delay of the external fiber-optic links (cable length: 1m). Measured from the transition of the turn-on or turn-off command at the optical transmitter on the host controller side to the direct output of the gate drive unit (excluding the delay of the gate resistors).

21) Output rise and fall times are measured between 10% and 90% of the nominal output swing. The values are given for the driver side of the gate resistors with 2Ω/1µF load. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at their load side.

22) Delay of external fiber-optic links. Measured from the driver secondary side (ASIC output) to the optical receiver on the host controller (cable length: 1m).

23) Measured on the host side. The fault status on the secondary side is automatically reset after the specified time.

24) Including the delay of the external fiber-optic links (cable length: 1m). Measured from the transition of the turn-on or turn-off command at the optical transmitter on the host controller side to the transition of the acknowledge signal at the optical receiver on the host controller side.

25) The gate resistors can be leaded or surface mounted. Power Integrations reserves the right to determine which type will be used. Typically, higher quantities will be produced with SMD resistors and small quantities with leaded resistors.

26) The driver supply voltage VDC is split into two distinct voltages on the driver. The first one is the turn-on voltage which is regulated at about 15V. The difference between VDC and the turn-on voltage is the turn-off voltage which is not regulated and mainly dependent on the driver input voltage VDC.

27) The fault status is set as long as the gate monitoring fault is present. The given value applies if the driver goes from the “off state” to the “on state” and the gate-emitter voltage of one or more parallel connected drivers does not turn on. If the driver goes from the “on state” to the “off state” and the gate-emitter voltage of one or more parallel connected drivers does not turn off, the fault status is applied as long as the gate monitoring fault is present.

28) The storage temperature inside the original package (1) or in case the coating material of coated products may touch external parts (2) must be limited to the given value. Otherwise, it is limited to 90°C.

29) The component surface temperature, which may strongly vary depending on the operating condition, must be limited to the given value for coated driver versions to ensure long-term reliability of the coating material.
Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.
Ordering Information

Our international terms and conditions of sale apply.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Power Integrations Driver Type #</th>
<th>Related IGBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master, Fiber-Optic Interface</td>
<td>1SP0335V2M1-FZ750R65KE3</td>
<td>FZ750R65KE3(T)</td>
</tr>
<tr>
<td>Master, Fiber-Optic Interface 1), 3)</td>
<td>1SP0335V2M1C-FZ750R65KE3</td>
<td>FZ750R65KE3(T)</td>
</tr>
<tr>
<td>Master, Fiber-Optic Interface 2)</td>
<td>1SP0335S2M1-FZ750R65KE3</td>
<td>FZ750R65KE3(T)</td>
</tr>
<tr>
<td>Master, Fiber-Optic Interface 2), 3)</td>
<td>1SP0335S2M1C-FZ750R65KE3</td>
<td>FZ750R65KE3(T)</td>
</tr>
<tr>
<td>Slave, Electrical Interface</td>
<td>1SP0335D2S1-FZ750R65KE3</td>
<td>FZ750R65KE3(T)</td>
</tr>
<tr>
<td>Slave, Electrical Interface 3)</td>
<td>1SP0335D2S1C-FZ750R65KE3</td>
<td>FZ750R65KE3(T)</td>
</tr>
</tbody>
</table>

1) Fiber-optic interface with versatile link (HFBR-2522ETZ and HFBR-1522ETZ)
2) Fiber-optic interface with ST (HFBR-2412Z and HFBR-1412Z)
3) See "Description & Application Manual for 1SP0335 SCALE-2 IGBT Drivers"

Conformal coated version

Product home page: www.power.com/igbt-driver/go/1SP0335

Refer to www.power.com/igbt-driver/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, evaluation systems, product documentation and application support

Please click onto: www.power.com/igbt-driver
Power Integrations Sales Offices

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-9200
Fax: +1-408-414-9765
Email: usasales@power.com

AMERICAS EAST
7360 McGinnis Ferry Road
Suite 225
Suwanee, GA 30024 USA
Tel: +1-678-957-0724
Fax: +1-678-957-0784
Email: usasales@power.com

AMERICAS CENTRAL
333 Sheridan Road
Winnetka, IL 60093 USA
Tel: +1-847-721-6293
Email: usasales@power.com

AMERICAS WEST
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-8778
Fax: +1-408-414-3760
Email: usasales@power.com

CHINA (Shanghai)
Room 2410, Charity Plaza
No. 88 North Caoki Road
Shanghai, 200030 China
Tel: +86-21-6354-6323
Fax: +86-21-6354-6325
Email: chinasales@power.com

CHINA (Shenzhen)
17/F, Hvac Building, No 2
Keji South 8th Road, Nanshan District
Shenzhen, 518057 China
Tel: +86-755-8672-8689
Fax: +86-755-8672-8690
Email: chinasales@power.com

GERMANY (AC-DC/LED Sales)
Lindwurmstrasse 114
80337 München, Germany
Tel: +49-89-5527-39100
Fax: +49-89-1228-5374
Email: eurosales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 1
59469 Ense, Germany
Tel: +49-2938-64-39990
Email: igbt-driver.sales@power.com

GERMANY
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama, Kohoku-ku
Yokohama-shi, Kanagawa
Japan 222-0033
Tel: +81-45-471-1021
Fax: +81-45-471-3717
Email: japansales@power.com

INDIA (Mumbai)
Unit: 106-107, Sagar Tech Plaza-B
Sakinaka, Andheri Kurla Road
Mumbai, Maharashtra 400072 India
Tel 1: +91-22-4003-3700
Tel 2: +91-22-4003-3600
Email: indiasales@power.com

INDIA (New Delhi)
#45, Top Floor
Okhla Industrial Area, Phase - III
New Delhi, 110020 India
Tel 1: +91-11-4055-2351
Tel 2: +91-11-4055-2353
Email: indiasales@power.com

INDIA (Bangalore)
#1, 14th Main Road
Vasanthangar
Bangalore, 560052 India
Tel 1: +91-80-4113-8020
Tel 2: +91-80-4113-8028
Fax: +91-80-4113-8023
Email: indiasales@power.com

ITALY
Via Milanese 20
20099 Sesto San Giovanni (MI), Italy
Tel: +39-02-4550-8708
Email: eurosales@power.com

JAPAN
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama, Kohoku-ku
Yokohama-shi, Kanagawa
Japan 222-0033
Tel: +81-45-471-1021
Fax: +81-45-471-3717
Email: japansales@power.com

KOREA
RM602, 6FL, 22
Teheran-ro 87-gil, Gangnam-gu
Seoul, 06164 Korea
Tel: +82-2-2016-6610
Fax: +82-2-2016-6630
Email: koreasales@power.com

SINGAPORE
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Tel 1: +65-6358-2160
Tel 2: +65-6358-4480
Fax: +65-6358-2015
Email: singaporesales@power.com

TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, 114 Taiwan
Tel: +886-2-2659-4570
Fax: +886-2-2659-4550
Email: taiwansales@power.com

UNITED KINGDOM
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge, CB4 1YG United Kingdom
Tel: +44-7823-557-484
Email: eurosales@power.com