1SP0351V2B0C-5SNA3000K452300
SCALE™-2 Family

Gate Driver for 4500 V Press-Pack IGBT, Optical I/O Interface

Product Highlights

Highly Integrated, Compact Footprint
- Sophisticated digital control in custom mixed signal ASIC
- Ready-to-use gate driver solution optimized for Press-Pack IGBTs with 4500 V blocking voltage
- Single channel gate driver
- Optical interface
- ±50 A peak output gate current
- 1.8 W output power at maximum ambient temperature
- -40 °C to 85 °C operating ambient temperature

Protection and Safety Features
- Undervoltage lock-out (UVLO) protection for primary-side (low voltage side) and secondary-side (high voltage side)
- Power semiconductor short-circuit protection
- Dynamic Advanced Active Clamping (DAAC) with dv/dt-feedback
- Applied double sided conformal coating

Full Safety and Regulatory Compliance
- 100% production partial discharge test for DC/DC-transformer
- 100% production HIPOT compliance testing at 10.2 kVrms for DC/DC-transformer
- Clearance and creepage distances between primary and secondary side meet requirements for basic isolation according to IEC 61800-5-1

Applications
- VSC-HVDC
- FACTS
- STATCOM
- Medium voltage drives
- Railway main inverters
- Other industrial applications

Description

The plug-and-play 1SP0351V2B0C-5SNA3000K452300 gate driver is based on the SCALE-2 chip set. It is optimized for operation of 4500 V Press-Pack IGBT power modules.

The gate driver features optical interfaces and a built-in DC/DC power supply with basic isolation. Enhanced level of protection is provided by implemented short-circuit monitoring.

Power Integrations’ Dynamic Advanced Active Clamping allows an extended DC-link voltage range in IGBT off-state for up to 60 s.
Product Details 1SP0351V2B0C-5SNA3000K452300

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Power Module</th>
<th>Voltage Class</th>
<th>Current Class</th>
<th>Package</th>
<th>Power Device Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SP0351V2B0C-5SNA3000K452300</td>
<td>5SNA3000K452300</td>
<td>4500 V</td>
<td>3000 A</td>
<td>Press-Pack</td>
<td>ABB</td>
</tr>
</tbody>
</table>

Table 1. Product Information

Notes:
Interface Description

Figure 1. 1SP0351V2B0C-SSNA3000K45Z300 Interfaces

Connector X301
Primary-side interface (Dinkle 2EHDR connector)

V15 (Pin 1):
This pin is the primary-side 15 V supply voltage connection for the integrated DC/DC converter.

GND (Pin 2):
This pin is the connection for the primary-side ground potential.

Optical Interface OIN
This is the optical receiver (Broadcom HFBR-2522ETZ) for the command input signals.

Optical Interface OOUT
This is the optical transmitter (Broadcom AFBR-1529Z) for the status output signals.

Terminal C
This terminal (M4 screw terminal) is the connection to the collector (typically connected to the referring heat sink).

Terminal E
This terminal (M4 screw terminal) is the connection to the emitter.

Terminal G
This terminal (M4 screw terminal) is the connection to the gate.
1SP0351V2 Functional Description

1SP0351V2B0C-5SNA3000K452300 is a highly integrated single-channel plug-and-play gate driver for 4500 V high power IGBTs in Press-Pack housings. The plug-and-play capability of the driver allows immediate operation after mounting.

The gate driver contains all necessary components for optimal and safe driving of the target power semiconductors:

- Smallest recommended gate resistors in order to minimize switching losses and respect the SOA of the semiconductor
- Gate clamping to reduce the effective short-circuit current
- Short-circuit monitoring
- Over voltage protection to turn off the power semiconductor within the safe operation area (SOA) in case of over-current or short-circuit
- Integrated and galvanically isolated DC/DC converter
- Fiber optic interfaces for the communication to the external controller

Figure 2 shows the block diagram of the gate driver with its function units.

Power Supply

The gate driver has one V15 terminal on the interface connector X301 to supply the integrated and galvanically isolated DC/DC converter for the secondary-side. The V15 terminal must be connected to a single 15 V power supply.

The transformer of the DC/DC converter provides basic isolation according to IEC 61800-5-1 between the primary-side and secondary-side.

Under Voltage Monitoring

The supply voltages are closely monitored on the driver secondary-side. In case of an UVLO on the secondary-side, the light signal of the optical transmitter OOUT will be turned-off and the power semiconductor is driven with a negative gate voltage.

Optical Input (OIN)

This is the edge-triggered command input signal to drive attached power semiconductor. A light signal at the input OIN will turn-on the gate of the power semiconductor.

Accordingly, no light signal will turn-off the gate.

Gate driver signal is transferred from OIN to the gate with a propagation delay of \(t_{PH} \) for the turn-on and \(t_{PL} \) for the turn-off commands.

Optical Output (OOUT)

During normal operation (i.e. the gate driver is supplied with power at nominal voltage, and there is no fault anywhere), the status feedback is given by a light on signal at the optical link. A failure condition is signaled by a light off signal.

Each edge of the control signal is acknowledged by the gate driver with a short pulse (the light is off for a period of \(t_{OL} \)). Because this can be observed by the external controller, this method allows simple and continuous monitoring of the driver and fiber-optic link. Figure 3 shows the control and response signals of a given driver in normal operation.

Figure 4 shows the response of the gate driver in the event of a short-circuit condition. The fault status is transferred to the optical transmitter OOUT after the response time. The light is then switched off during the delay \(t_{OL} \) to clear the fault state. The driver shuts the power semiconductor off with a delay of \(t_{PD,SC} \) after the response time. The power semiconductor can be turned on again by applying a positive edge to the fiber-optic input OIN after the fault status has disappeared.
In case of a secondary-side UVLO, the fault status remains active as long as the UVLO condition remains. The gate driver response in the event of an UVLO on the supply voltage V_{ISSO} is shown in Figure 5.

Note: During the gate driver power-up sequence, the status feedback will also show a fault condition until the secondary-side supply voltages V_{ISSO} and V_{COM} have reached their respective threshold level of UVLO clearance.

Gate Voltage

The gate driver possesses a voltage regulator for the positive (turn-on) rail of the gate voltage. Internal current sources are regulating actively the positive gate-emitter voltage independently of actual load conditions within the maximum specified ratings. Therefore, the on-state gate-emitter voltage $V_{GE(on)}$ of the power semiconductor equals in steady state the positive supply voltage V_{ISSO} (referred to emitter potential).

The off-state gate-emitter voltage $V_{GE(off)}$ equals in steady state the voltage V_{COM} (referred to emitter potential). This voltage is load dependent. It has its lowest value under no load conditions and is increasing slightly (i.e. getting less negative) with increasing load.

In the event of an under voltage lock-out condition the gate driver changes the control of the positive rail towards control of the negative rail V_{COM}. By this potential parasitic turn-on events of the power semiconductor are avoided.

Short-Circuit Protection

The gate driver uses the semiconductor desaturation effect to detect short-circuits. The desaturation is monitored by using a resistive-capacitive sensing network. At turn-on the collector-emitter voltage is checked after the response time t_{res} to detect a short circuit. If the voltage is higher than the programmed threshold voltage $V_{GE(on)}$, the driver detects a short-circuit condition. A fault signal is transmitted to optical status output OOUT immediately. It is automatically reset after blocking time t_{blk}. The monitored semiconductor is switched off after the delay $t_{t关,SC}$.

The semiconductor is turned-on again as soon as the next positive edge is applied to the optical input OIN after the fault status has disappeared.

Gate Clamping

In the event of a short-circuit condition the gate voltage is increased due to the high dv/dt between the collector and emitter terminals of the driven power semiconductor. This dv/dt is driving a current through the Miller-capacitance (capacitance between the gate and collector) and charges the gate capacitance, which eventually leads to a gate-emitter voltage larger than the nominal gate-emitter turn-on voltage. In consequence, the short-circuit current is increased due to the transconductance of the power semiconductor.

To ensure that the gate-emitter voltage stays close to the nominal turn-on voltage the gate driver features a gate-clamping circuitry. The gate clamping provides a voltage similar to V_{ISSO} to the gate, i.e. 15 V. As the effective short-circuit current is a function of the gate-emitter voltage the short-circuit current is limited. As a result the energy dissipated in the power semiconductor during the short-circuit event is reduced, leading to a junction temperature within the short-circuit safe operating area (SCSOA) limits and enables a safe turn-off of the device.
Dynamic Advanced Active Clamping (DA²C)

Active clamping is a technique designed to partially turn on the IGBT in case the collector-emitter voltage exceeds a predefined threshold. The IGBT is then kept in linear operation. Basic active clamping topologies implement a single feedback path from the collector through transient voltage suppressor (TVS) diodes to the gate. In addition a dv/dt-feedback path between collector and gate is implemented in order to optimized the Active Clamping behavior. The 1SP0351V2B0C-5SNA3000K452300 gate driver contains Power Integrations’ Dynamic Advanced Active Clamping (DA²C) based on this principle:

When active clamping is activated, the turn-off MOSFET of the gate driver is switched off in order to improve the effectiveness of the active clamping and to reduce the losses in the TVS diodes. This feature – called Advanced Active Clamping – is mainly integrated in the secondary-side ASIC of the gate driver.

Additional TVS diodes have been added in series to the TVS diodes required to withstand the maximum DC-link voltage under switching operation. These TVS diodes are short-circuited during the IGBT on state as well as for about 15…20µs after the turn-off command to guarantee efficient active clamping. After this delay, these additional TVS diodes are activated and allow the DC-link voltage to be increased to a higher value during the IGBT off-state. This feature – together with Advanced Active Clamping – is called Dynamic Advanced Active Clamping (DA²C).

Note: The time during which the voltage can be applied above the value for switching operation has to be limited to short periods (< 60 s).

![Dynamic Advanced Active Clamping (DA²C)](image_url)

Figure 6. Dynamic Advanced Active Clamping (DA²C).
Absolute Maximum Ratings – 1SP0351V2B0C-5SNA3000K452300

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary-side supply voltage</td>
<td>(V_{\text{VSS}})</td>
<td>(V_{\text{SS}}) to GND</td>
<td>0</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Primary-side supply current</td>
<td>(I_{\text{VSS}})</td>
<td>Steady-state condition</td>
<td>360</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>(f_{\text{SW}})</td>
<td>Continuous operation</td>
<td>2</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Gate output power</td>
<td>(P_{\text{G}})</td>
<td>(T_{\text{A}} = 85 , ^\circ \text{C})</td>
<td>1.8</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Gate output current</td>
<td>(I_{\text{G}})</td>
<td></td>
<td>50</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Test voltage primary-side to secondary-side</td>
<td>(V_{\text{iso},ps})</td>
<td>50 Hz, 60 s</td>
<td>10200</td>
<td>(V_{\text{RMS}})</td>
<td></td>
</tr>
<tr>
<td>Operating voltage primary-side to secondary-side</td>
<td>(V_{\text{op}})</td>
<td>Transient only</td>
<td>4500</td>
<td>(V_{\text{IN}})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permanently applied</td>
<td>3400</td>
<td>(V_{\text{OC}})</td>
<td></td>
</tr>
<tr>
<td>DC-link voltage</td>
<td>(V_{\text{DLK}})</td>
<td>Switching operation</td>
<td>3400</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off-state, limited to 60 s</td>
<td>4000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{STG}})</td>
<td>-40</td>
<td>50</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>(T_{\text{A}})</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Surface temperature</td>
<td>(T_{\text{SF}})</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>(H_{\text{R}})</td>
<td>No condensation</td>
<td>93</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Altitude of operation</td>
<td>(A_{\text{OP}})</td>
<td></td>
<td>2000</td>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.
2. The storage temperature inside the original package or in case the coating material of coated products may touch external parts must be limited to the given value. Otherwise, it is limited to 85°C.
3. The component surface temperature, which may strongly vary depending on the actual operating conditions, must be limited to the given value for coated gate driver versions to ensure long-term reliability of the coating material.
4. Operation above this level requires a voltage derating to ensure proper isolation coordination.

Recommended Operating Conditions – 1SP0351V2B0C-5SNA3000K452300

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary-Side Supply Voltage</td>
<td>(V_{\text{VSS}})</td>
<td>(V_{\text{SS}}) to GND</td>
<td>14.5</td>
<td>15</td>
<td>15.5</td>
<td>V</td>
</tr>
</tbody>
</table>
Characteristics – 1SP0351V2B0C-5SNA3000K452300

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{VIS} = 15, \text{V}, \text{without load}$</td>
<td>150</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{VIS} = 15, \text{V}, P_G = P_{G\max}$</td>
<td>280</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{VIS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply monitoring threshold (secondary-side)</td>
<td>$UVLO_{VISO}$</td>
<td>Referenced to terminal E</td>
<td>Clear fault (resume operation)</td>
<td>11.6</td>
<td>12.6</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set fault (suspend operation)</td>
<td>11.0</td>
<td>12.0</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>$UVLO_{VISO}$</td>
<td></td>
<td>Hysteresis</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$UVLO_{COM}$</td>
<td></td>
<td>Clear fault (resume operation)</td>
<td>-5.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set fault (suspend operation)</td>
<td>-4.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage (secondary-side)</td>
<td>V_{VISO}</td>
<td>Referenced to V_{COM}</td>
<td>$V_{VIS} = 15, \text{V}, \text{without load}$</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{VIS} = 15, \text{V}, P_G = P_{G\max}$</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling capacitance</td>
<td>C_{io}</td>
<td>Primary-side to secondary-side</td>
<td></td>
<td>8</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Timing Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay</td>
<td>$t_{(LH)}$</td>
<td>OIN to 50% of $V_{GE(on)}$, no load attached (optical cable length 1 m)</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay</td>
<td>$t_{(HL)}$</td>
<td>OIN to 50% of $V_{GE(off)}$, no load attached (optical cable length 1 m)</td>
<td>125</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Transmission delay of fault state</td>
<td>t_{OOUT}</td>
<td>Optical cable length 1 m</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:

5. Measured from the transition of the turn-on or turn-off command at the optical transmitter of the external controller to the direct output of the gate drive unit (excluding the delay of the gate resistors).

6. Measured from the driver secondary-side (ASIC output) to the optical receiver on the external controller.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing Characteristics</td>
<td></td>
<td>TA = 25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay to clear fault state*</td>
<td>t_blk</td>
<td>Measured on the external controller side</td>
<td>8</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Acknowledge delay time*</td>
<td>t_d(ack)</td>
<td>Optical cable length 1 m</td>
<td>190</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Acknowledge pulse width</td>
<td>t_ack</td>
<td>Measured on the external controller side</td>
<td>400</td>
<td>600</td>
<td>1050</td>
<td>ns</td>
</tr>
<tr>
<td>Gate Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate turn-on voltage</td>
<td>V_G(ON)</td>
<td>V_{Vin} = 15 V, without load, referenced to terminal E</td>
<td>15</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{Vin} = 15 V, P_G = P_G, referenced to terminal E</td>
<td>15</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Gate turn-off voltage</td>
<td>V_G(OFF)</td>
<td>V_{Vin} = 15 V, without load, referenced to terminal E</td>
<td>-9.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{Vin} = 15 V, P_G = P_G, referenced to terminal E</td>
<td>-9.1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Short-Circuit Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static VCE-monitoring threshold</td>
<td>V_{CE(stat)}</td>
<td></td>
<td>680</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Response time</td>
<td>t_res</td>
<td>DC-link voltage = 3400 V</td>
<td>8</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC-link voltage = 2800 V</td>
<td>8</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC-link voltage = 1500 V</td>
<td>8</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Delay to power semiconductor turn-off after short-circuit detection</td>
<td>t_DLSC</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
</tbody>
</table>

Notes:

8. The fault status is stretched by the given value after the fault condition has been turned-off.
9. Measured from the transition of the turn-on or turn-off command at the optical transmitter of the external controller to the transition of the acknowledge signal at the optical receiver of the external controller.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test voltage</td>
<td>$V_{iso,ps}$</td>
<td>Primary-side to secondary-side</td>
<td>10.2</td>
<td></td>
<td></td>
<td>kV RMS</td>
</tr>
<tr>
<td>Partial discharge extinction voltage</td>
<td>$P_{D,ps}$</td>
<td>Primary-side to secondary-side</td>
<td>5400</td>
<td></td>
<td></td>
<td>V pk</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPG P-S,PCB</td>
<td></td>
<td>On the PCB (Material group IIIa),</td>
<td>45</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary-side to secondary-side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPG P-S,Trf</td>
<td></td>
<td>On the transformer (Material group I),</td>
<td>36</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary-side to secondary-side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance distance</td>
<td>CLR P-S</td>
<td>Primary-side to secondary-side</td>
<td>25</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Mounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal connection torque</td>
<td>M_{H4}</td>
<td>Screw M4</td>
<td>1.8</td>
<td></td>
<td>2.1</td>
<td>Nm</td>
</tr>
<tr>
<td>Bending</td>
<td>l_{bend}</td>
<td>According to IPC</td>
<td>0.75</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Gate Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on gate resistor</td>
<td>$R_{G(on)}$</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-off gate resistor</td>
<td>$R_{G(off)}$</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Auxiliary gate capacitor</td>
<td>C_{GE}</td>
<td></td>
<td>330</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
</tbody>
</table>

Notes:

10. The transformer of every production sample has undergone 100% testing at the given value for 1s.

11. Partial discharge measurement is performed on each transformer. The measurements are performed in accordance with IEC 60270 and IEC 60664-1 for basic insulation requirements.

12. Refer to section Mounting Instruction for absolute values of allowed bending distances.
Mounting Instruction

The gate driver has to be mounted on top of a suitable surface using the provided non-plated fixation holes S1 to S8 as shown in Figure 7. To avoid corona effects non-conducting M4 screws have to be used.

![Fixation Points](image)

To avoid mechanical stress of the gate driver during and after the mounting process any bending or warping force imposed to the gate driver must not lead to a vaulting or twisting of the PCB of 0.75 % per axis according to Figure 8:

- Axis 1 and 3: max. 1.4 mm bending
- Axis 2: max. 1.0 mm bending
- Axis 4: max. 1.1 mm bending

![Bending Lines](image)

The maximum mounting force for the terminal C is given with \(M_{\text{max}} \).

As the 1SP0351V2B0C-5SNA3000K452300 is designed for high voltage applications care has to be taken concerning the surrounding area of the gate driver. The gate driver itself possesses a basic isolation with clearance and creepage distances of CLR-P and CPG-P,PCB. To maintain this isolation the following distances according to Figure 9 must be kept:

- \(d_s \): It defines the distance between the surrounding area and any primary-side potential of the gate driver. If the surrounding area is connected to the primary-side GND potential, \(d_s \) can be set to 0 mm. Otherwise \(d_s \) has to be set according to the nearest potential and relevant standard for isolation coordination of the application.

- \(d_b \): It defines the distance between the bottom side of the gate driver PCB and the mounting plate. In case the mounting plate is made of metal and/or is electrically conducting the isolated stand-offs must have a distance as defined in the isolation coordination of the application. In case the mounting plate is non-conducting any surrounding conducting area has to be kept away from the bottom side of the gate driver with a distance of not smaller than 20 mm.

- \(d_c \): If defines the distance between the top side of the gate driver PCB and the surrounding area. The distance must be chosen according to the isolation coordination of the application plus 4 mm (to respect the height of mounted components on top of the gate driver PCB).

- \(d_t \): It defines the distance between the collector, emitter and/or gate cables to the surrounding area. The minimum distance is defined according to the nearest potential and relevant standard for isolation coordination of the application. However, the distance must not be smaller than 20 mm.

![Clearance Distances to Surrounding Areas](image)

Cables

The cable from gate driver connector X301 to the power supply is not part of the 1SP0351V2B0C-5SNA3000K452300 gate driver. It is recommended to route the cable with minimum parasitic coupling from the controller to the gate driver. Parasitic coupling in particular to any potential of the secondary-side of the gate driver (i.e. high voltage side) and the AC and/or DC bus bar has to be avoided. Otherwise, increased common-mode currents may circulate, which may cause interferences with command and/or status feedback signals.
Application Guidelines

The following guidelines are meant to optimize the overall system performance when using 1SP0351V2B0C-SSNA3000K452300 gate drivers in various applications.

Power Supply

The gate driver has to be supplied by a fixed voltage of typically 15V at V15.

Gate Output Power Calculation

The gate driver can provide up to 1.8 W of gate output power. This value must not be exceeded to prevent any electrical and/or thermal overload of the 1SP0351V2B0C-SSNA3000K452300 gate driver.

The gate output power is related to the power semiconductor’s gate charge Qg as stated in the corresponding datasheet, actual switching frequency fsw, and gate turn-on V𝐺𝐸(𝑡𝑜𝑛) and turn-off V𝐺𝐸(𝑡贲) voltage and can be estimated according to equation (1).

\[P_\text{g} = Q_g \cdot \left(\frac{V_{\text{GE(on)}}}{V_{\text{GE(off)}}} \right)^2 \cdot f_{\text{SW}} \]

The voltages V𝐺𝐸(𝑡贲) and V𝐺𝐸(𝑡贲) refer to the referenced gate turn-on and turn-off gate voltages of the respective driven power semiconductor datasheet at which the gate charge Qg is given.

DC-Link Design

The mechanical and electrical design of the DC-link of the target application determines during turn-off or diode reverse recovery events of the driven power semiconductor the over voltages ∆Vc according to equation (2). Here, Lc describes the overall DC-link stray inductance (i.e. sum stray inductance of DC-capacitors, DC-link bus bar and power semiconductor) and relevant dt/dt the collector current change.

\[\Delta V = L_c \cdot \frac{dC}{dt} \]

If the over voltage ∆Vc plus the applied DC-link voltage Vdc exceed the breakdown voltage of the driven power semiconductor (refer to the reverse bias safe operating area RBSOA resp. to the reverse recovery safe operating area RRSOA), the device may be damaged. In case of excessive turn-off or reverse recovery over voltages, one or more of the following application parameters have to be decreased:

- DC-link voltage Vdc
- Stray inductance Lc
- Collector current ic (only for turn-off even)

Therefore, during the installation and testing of the target application the actual over voltages ∆Vce at different conditions have to be measured.

Note: 1SP0351V2B0C-SSNA3000K452300 gate driver will actively limit any over voltage during turn-off events under normal and over current conditions to safe levels using the implemented Dynamic Advanced Active Clamping scheme. However, it is not recommended that the clamping feature is active during normal switching conditions. It may lead to an over load of the implemented clamping devices. Furthermore, it might lead to an under voltage lock-out (UVLO) condition on the secondary-side power supply of the gate driver and an increase of the turn-off switching losses.

Multilevel Topologies

1SP0351V2B0C-SSNA3000K452300 gate drivers are designed for 2-level topologies. Operation within 3-level or multilevel designs is, however, also possible:

- Cascaded multilevel topologies on system level like for instance Modular Multilevel Converter (MMC) operating with 2-level topologies within one cell are supported without any restriction (implying that required isolation requirements are fulfilled).
- For 3-level systems the turn-off sequence has to be obeyed by the system controller to avoid overvoltage events, which might lead to an RBSOA (reverse biased safe operating area) violation of the power semiconductor. However, 1SP0351V2B0C-SSNA3000K452300 gate driver have Power Integrations’ Dynamic Advanced Active Clamping (DA²C) implemented, which enables the gate driver to protect the power semiconductor against over voltage conditions arising by wrong turn-off sequences. The suitability of DA²C has to be checked within the target application.

Note: During short-circuit and/or under voltage events, the gate driver will immediately switch-off the respective power semiconductor. No control on the turn-off sequence is given. Therefore, the suitability of 1SP0351V2B0C-SSNA3000K452300 has to be checked on application level for this kind of topology.

Conformal Coating

The electronic components of the gate driver are protected by a layer of acrylic conformal coating with a typical thickness of 50µm using ELPEGUARD SL 1307 FLZ2/2 from Lackwerke Peters on both sides of the PCB. This coating layer increases the product reliability when exposed to contaminated environments.

Note: Standing water (e.g. condensate water) on top of the coating layer is not allowed as this water will diffuse over time through the layer. Eventually it will form a thin film of conducting nature between PCB surface and coating layer, which will cause leakage currents. Such currents may lead to a disturbance of the performance of the gate driver.
Reliability Test Items

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Test Methods and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Tests</td>
<td></td>
</tr>
<tr>
<td>Mechanical vibrations (sinusoidal)</td>
<td>IEC 60068-2-6, frequency range 10 - 150 Hz (7.5 mm displacement, 20 m/s², 30 min), 3 axis, 20 sweep cycles</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-78, 65 °C (95 % RH, 24 h) → 25 °C (1 h, DUT operated), 10 cycles</td>
</tr>
<tr>
<td>Damp heat cyclic</td>
<td>IEC 60068-2-30, 25 °C / 60 % RH → within 1 h up to 95 % RH → within 3 h up to 60 °C → stable 93 % RH for 12 h → within 3 h down to 25 °C → end at 24 h, 6 cycles</td>
</tr>
<tr>
<td>Dry heat</td>
<td>IEC 60068-2-2, 85 °C (48 h, 2 h recovery, operated after 0.5 h)</td>
</tr>
<tr>
<td>Cold</td>
<td>IEC 60068-2-1, -40 °C (48 h, 2 h recovery, operated after 0.5 h)</td>
</tr>
<tr>
<td>Salt spray</td>
<td>IEC 60068-2-11, 5 % concentration, 35 °C, 48 h → 25 °C, 1 h recovery → DUT operated</td>
</tr>
<tr>
<td>Change of temperature</td>
<td>IEC 60068-2-14, -40 °C and 85 °C, holding time 3 h, 10 cycles (read-out after 5th cycle, DUT operated at -10 °C and 70 °C)</td>
</tr>
<tr>
<td>Endurance Tests</td>
<td></td>
</tr>
<tr>
<td>High temperature, high load test</td>
<td>V\textsubscript{V15} = 15 V, P\textsubscript{G} = P\textsubscript{G,\text{max}} (capacitive load), 85 °C, test duration 1000 h</td>
</tr>
<tr>
<td>Thermal cycling</td>
<td>IEC 60068-2-14, -40 °C → 125 °C (5K/min, 500 cycles, DUT unpowered)</td>
</tr>
<tr>
<td>EMC Test Items</td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge immunity</td>
<td>IEC 61000-4-2, contact discharge 8 kV, air discharge 15 kV, terminal test points C, E, G and GND</td>
</tr>
<tr>
<td>Radiated noise immunity</td>
<td>IEC 61000-4-3, frequency range 80 – 3000 MHz, sine wave 80% AM modulated (1 kHz), 30 V/m</td>
</tr>
<tr>
<td>Fast transient burst immunity</td>
<td>IEC 61000-4-4, capacitive clamp with 50 Ω termination, ±5 kV, 5 kHz (15 ms) and 100 kHz (0.75 ms), test points V15 and GND / C and E with attached power semiconductor, test duration 200 s</td>
</tr>
<tr>
<td>Conducted noise immunity</td>
<td>IEC 61000-4-6, frequency range 0.15 – 80 MHz, sine wave 80% AM modulated (1 kHz), 20 V\textsubscript{peak}, test points V15 and GND</td>
</tr>
<tr>
<td>Magnetic field immunity</td>
<td>IEC 61000-4-8, 100 m/A (30 s), 1000 A/m (1 – 3 s), 3 axis</td>
</tr>
<tr>
<td>Ring wave immunity</td>
<td>IEC 61000-4-10, 100 A/m, 100 kHz and 1 MHz, 3 axis, test duration 2s</td>
</tr>
<tr>
<td>Damped oscillatory wave immunity</td>
<td>IEC 61000-4-12, line-to-line 2 kV, line-to-ground 4 kV, test points V15 and GND</td>
</tr>
<tr>
<td>Radiated oscillatory wave immunity</td>
<td>IEC 61000-4-18, common mode 2 kV, differential mode 1 kV, 100 kHz and 1 MHz, test points V15 and GND</td>
</tr>
</tbody>
</table>

Notes:
1. All environmental tests are conducted on the same sample in the given order of tests.
Product Dimensions - 1SP0351V2B0C-5SNA3000K452300

Side Views

Top View

all measures in mm

Figure 10. Dimensions.
Transportation and Storage Conditions
For transportation and storage conditions refer to Power Integrations’ Application Note AN-1501.

RoHS Statement
We hereby confirm that the product supplied does not contain any of the restricted substances according Article 4 of the RoHS Directive 2011/65/EU in excess of the maximum concentration values tolerated by weight in any of their homogeneous materials.

Additionally, the product complies with RoHS Directive 2015/863/EU (known as RoHS 3) from 31 March 2015, which amends Annex II of Directive 2011/65/EU.
For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREBIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein.

No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Safety Notice

The data contained in this datasheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory.

Any handling of electronic devices is subject to general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE, SCALE-iDriver, SCALE-iFlex, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch, HipertFS, HiperPFS, HiperLCs, DPA-Switch, CAPZero, Clamplex, EcoSmart, E-Shield, FilterFuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies.

©2020, Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations

World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

China (Shanghai)
Rm 2410, Charity Plaza, No. 88 North Caoxi Road
Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail: chinasales@power.com

China (Shenzhen)
17/F, Hvac Building, No. 2,
Keji Nan 8th Road, Nanshan District, Shenzhen, China,
518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

Germany (AC-DC/LED Sales)
Einsteinring 24
85609 Dornach/Aschheim
Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

Germany (Gate Driver Sales)
HellewegForum 1
59469 Ense Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@power.com

India
#1, 14th Main Road
Vasanthanagar Bangalore-560052 India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

Italy
Via Milanese 20, 3rd Fl.
20099 Sesto San Giovanni
(MI) Italy Phone: +39-024-550-8701
e-mail: eurosales@power.com

Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi, Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

Korea
RM 602, 6FL
Korea City Air Terminal B/D,
159-6 Samsung-Dong,
Kangnam-Gu, Seoul, 135-728,
Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

Singapore
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK
Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge
CB4 1YF
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com