Short Description

The low-cost SCALE™-2 dual-driver core 2SC0108T2D0-12 / 2SC0108T2D0C-12 (Coated version using ELPEGUARD SL 1307 FLZ/2 from Lackwerke Peters) combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0108T2D0(C)-12 drives all usual IGBT modules up to 1200V. The embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies are also supported.

The 2SC0108T2D0(C)-12 is the most compact driver core available for industrial applications, with a footprint of only 45 x 34.3mm and an insertion height of max. 16mm. It allows even the most restricted insertion spaces to be efficiently used. Compared with conventional drivers, the highly integrated SCALE-2 chipset allows about 85% of components to be dispensed with. This advantage is impressively reflected in increased reliability at simultaneously minimized cost.

The 2SC0108T2D0(C)-12 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, advanced active clamping as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and the other secondary channel.

An output current of 8A and 1W drive power is available per channel, making the 2SC0108T2D0(C)-12 an ideal driver platform for universal usage in small and medium power applications. The driver provides a gate voltage swing of \(+15V/-8V\). The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level.

Its outstanding EMC allows safe and reliable operation in even hard industrial applications.

Product Highlights

- Ultra-compact dual channel driver
- Highly integrated SCALE-2 chipset
- Gate current ±8A, 1W output power per channel
- \(+15V/-8V\) gate driving
- Blocking voltages up to 1200V
- Safe isolation to EN 50178
- Short delay and low jitter
- Interface for 3.3V...15V logic level
- UL compliant

Applications

- General purpose drives
- Uninterruptible power supplies (UPS)
- Solar and wind power converters
- Auxiliary converters for traction
- Electro/hybrid drive vehicles
- Driving parallel-connected IGBTs
- Switched mode power supplies (SMPS)
- Medical (MRT, CT, X-Ray)
- Laser technology
Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and important information that apply to this product, please refer to “2SC0108T2Dx-xx Description & Application Manual” on www.power.com/igbt-driver/go/2SC0108T

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Remarks</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{CC}</td>
<td>VCC to GND</td>
<td>0</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Logic input and output voltages</td>
<td>Primary side, to GND</td>
<td>-0.5 VCC+0.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx current</td>
<td>Failure condition, total current</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Gate peak current I_{out}</td>
<td>Note 1</td>
<td>-8</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>External gate resistance</td>
<td>Turn-on and turn-off</td>
<td>2</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>IGBT gate charge</td>
<td></td>
<td>6.3</td>
<td></td>
<td>μC</td>
</tr>
<tr>
<td>Average supply current I_{CC}</td>
<td>Notes 2, 3</td>
<td>260</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output power</td>
<td>Ambient temperature <70°C (Notes 4, 5)</td>
<td>1.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Ambient temperature <85°C (Note 4)</td>
<td>1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Test voltage (50Hz/1min.)</td>
<td>Primary to secondary (Note 14)</td>
<td>3800 $V_{AC eff}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secondary to secondary (Note 14)</td>
<td>3800 $V_{AC eff}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency f</td>
<td></td>
<td>50</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>$</td>
<td>dV/dt</td>
<td>$</td>
<td>Rate of change of input to output voltage (Note 10)</td>
<td>50 V_{peak}</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Primary/secondary, secondary/secondary</td>
<td>1200 V_{peak}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Note 5</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Note 19</td>
<td>-40</td>
<td>50</td>
<td>°C</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>Only for 2SC0108T2D0C-12 (Note 20)</td>
<td>125</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{CC}</td>
<td>VCC to GND</td>
<td>14.5</td>
<td>15</td>
<td>15.5</td>
<td>V</td>
</tr>
</tbody>
</table>
Electrical Characteristics

All data refer to +25°C and $V_{cc} = 15V$ unless otherwise specified.

Power supply

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current I_{cc} Without load</td>
<td>31</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling capacitance C_{io} Primary side to secondary side, per channel</td>
<td>23</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Supply Monitoring

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply threshold V_{cc} Primary side, clear fault</td>
<td>11.9</td>
<td>12.6</td>
<td>13.3</td>
<td>V</td>
</tr>
<tr>
<td>Monitoring hysteresis Primary side, set/clear fault</td>
<td>0.35</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply threshold V_{iso}-V_{ex} Secondary side, clear fault</td>
<td>12.1</td>
<td>12.6</td>
<td>13.1</td>
<td>V</td>
</tr>
<tr>
<td>Monitoring hysteresis Secondary side, set/clear fault</td>
<td>0.35</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply threshold V_{ex}-V_{com} Secondary side, clear fault</td>
<td>5</td>
<td>5.15</td>
<td>5.3</td>
<td>V</td>
</tr>
<tr>
<td>Monitoring hysteresis Secondary side, set/clear fault</td>
<td>4.7</td>
<td>4.85</td>
<td>5</td>
<td>V</td>
</tr>
</tbody>
</table>

Logic Inputs and Outputs

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bias current $V(INx) > 3V$</td>
<td>190</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on threshold $V(INx)$</td>
<td>2.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off threshold $V(INx)$</td>
<td>1.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx output voltage Failure condition, $I(SOx) < 20mA$</td>
<td>0.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-Circuit Protection

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ce}-monitoring threshold Note 18</td>
<td>9.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum response time Note 8</td>
<td>1</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum blocking time Note 9</td>
<td>9</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timing Characteristics

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay $t_{(on)}$ Note 6</td>
<td>70</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay $t_{(off)}$ Note 6</td>
<td>55</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter of turn-on delay Note 17</td>
<td>±2</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter of turn-off delay Note 17</td>
<td>±2</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output rise time $t_{(out)}$ Note 7</td>
<td>17</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output fall time $t_{(off)}$ Note 7</td>
<td>15</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission delay of fault state Note 13</td>
<td>360</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Data Sheet

Electrical Isolation

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test voltage (50Hz/1s)</td>
<td>3800</td>
<td>3850</td>
<td>3900</td>
<td>V_{eff}</td>
</tr>
<tr>
<td>Primary to secondary side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary to secondary side</td>
<td>3800</td>
<td>3850</td>
<td>3900</td>
<td>V_{eff}</td>
</tr>
<tr>
<td>Partial discharge extinction</td>
<td>1220</td>
<td></td>
<td></td>
<td>V_{peak}</td>
</tr>
<tr>
<td>Primary to secondary side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary to secondary side</td>
<td>1200</td>
<td></td>
<td></td>
<td>V_{peak}</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>12.9</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Primary to secondary side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary to secondary side</td>
<td>8.5</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td>12.9</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Primary to secondary side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary to secondary side</td>
<td>6.0</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking capacitance</td>
<td>9.4</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>VISOx to VEx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEx to COMx</td>
<td>9.4</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>0.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on and turn-off (Note 15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output voltage swing

The output voltage swing consists of two distinct segments. First, there is the turn-on voltage V_{GHx} between pins GHx and VEx. V_{GHx} is regulated and maintained at a constant level for all output power values and frequencies.

The second segment of the output voltage swing is the turn-off voltage V_{GLx}. V_{GLx} is measured between pins GLx and VEx. It is a negative voltage. It changes with the output power to accommodate the inevitable voltage drop across the internal DC/DC converter.

Output Voltage

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on voltage, V_{GHx}</td>
<td>15.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Any load condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx}</td>
<td>-9.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>No load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx}</td>
<td>-7.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>1W output power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx}</td>
<td>-7.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>1.2W output power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes to the Key Data

1) The maximum peak gate current refers to the highest current level occurring during the product lifetime. It is an absolute value and does also apply for short pulses.

2) The average supply input current is limited for thermal reasons. Higher values than specified by the absolute maximum rating are permissible (e.g. during power supply start up) if the average remains below the given value, provided the average is taken over a time period which is shorter than the thermal time constants of the driver in the application.

3) There is no means of actively controlling or limiting the input current in the driver. In the case of start-up with very high blocking capacitor values, or in case of short circuit at the output, the supply input current has to be limited externally.

4) The maximum output power must not be exceeded at any time during operation. The absolute maximum rating must also be observed for time periods shorter than the thermal time constants of the driver in the application.

5) An extended output power range is specified in the output power section for maximum ambient temperatures of 70°C. In that case, the absolute maximum rating for the operating temperature...
changes to (-40°C - 70°C) and the absolute maximum output power rating changes to 1.2W.

6) The delay time is measured between 50% of the input signal and 10% voltage swing of the corresponding output. The delay time is independent of the output loading.

7) Output rise and fall times are measured between 10% and 90% of the nominal output swing. The values are given for the driver side of the gate resistors without load. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.

8) The minimum response time given is valid for the circuit given in the description and application manual (Fig. 6) with the values of table 1 ($C_{ax} = 0\text{pF}$).

9) The blocking time sets a minimum time span between the end of any fault state and the start of normal operation (remove fault from pin SOx). The value of the blocking time can be adjusted at pin TB. The specified blocking time is valid if TB is connected to GND.

10) This specification guarantees that the drive information will be transferred reliably even at a high DC-link voltage and with ultra-fast switching operations.

11) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to both SOx outputs and the IGBTs are switched off.

12) Undervoltage monitoring of the secondary-side supply voltage (VISOx to VEx and VEx to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding SOx output.

13) Transmission delay of fault state from the secondary side to the corresponding primary status output.

14) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than $850V_{AC_{eff}}$ may lead to insulation degradation. No degradation has been observed over 1min. testing at $3800V_{AC_{eff}}$. Every production sample shipped to customers has undergone 100% testing at the given value or higher ($<5100V_{eff}$) for 1s.

15) The resulting gate resistance is the sum of the external and the internal gate resistance.

16) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.

17) Jitter measurements are performed with input signals INx switching between 0V and 5V referred to GND, with a corresponding rise time and fall time of 15ns.

18) The Vce-monitoring threshold cannot be modified by the user.

19) The storage temperature inside the original package (1) or in case the coating material of coated products may touch external parts (2) must be limited to the given value. Otherwise, it is limited to 90°C.

20) The component surface temperature, which may strongly vary depending on the operating condition, must be limited to the given value for coated driver versions to ensure long-term reliability of the coating material.
Preliminary Data Sheet

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.
Ordering Information

Our international terms and conditions of sale apply.

<table>
<thead>
<tr>
<th>Type Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC0108T2D0-12</td>
<td>Dual-channel SCALE-2 driver core</td>
</tr>
<tr>
<td>2SC0108T2D0C-12</td>
<td>Dual-channel SCALE-2 driver core (Conformal coating)</td>
</tr>
</tbody>
</table>

Product home page: www.power.com/igbt-driver/go/2SC0108T

Refer to www.power.com/igbt-driver/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, product documentation, and application support

Please click: www.power.com
Preliminary Data Sheet

Power Integrations Sales Offices

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-9200
Fax: +1-408-414-9765
Email: usasales@power.com

AMERICAS EAST
7360 McGinnis Ferry Road
Suite 225
Suwannee, GA 30024 USA
Tel: +1-678-957-0724
Fax: +1-678-957-0784
Email: usasales@power.com

AMERICAS WEST
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-8778
Fax: +1-408-414-3760
Email: usasales@power.com

GERMANY (AC-DC/LED Sales)
Lindwurmstrasse 114
80337 München, Germany
Tel: +49-89-5527-39100
Fax: +49-89-1228-5374
Email: eurosales@power.com

GERMANY (Gate Driver Sales)
HellewegForum 1
59469 Ense, Germany
Tel: +49-2938-64-39990
Email: igbt-driver.sales@power.com

AMERICAS CENTRAL
333 Sheridan Road
Winnetka, IL 60093 USA
Tel: +1-847-721-6293
Email: usasales@power.com

CHINA (Shanghai)
Room 2410, Charity Plaza
No. 88 North Caoxi Road
Shanghai, 200030 China
Tel: +86-21-6354-6323
Fax: +86-21-6354-6325
Email: chinasales@power.com

CHINA (Shenzhen)
17/F, Hvac Building, No.2
Keji South 8th Road, Nanshan District
Shenzhen, 518057 China
Tel: +86-755-8672-8689
Fax: +86-755-8672-8690
Email: chinasales@power.com

CHINA (Taiwan)
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, 114 Taiwan
Tel: +886-2-2659-4570
Fax: +886-2-2659-4550
Email: taiwansales@power.com

GERMANY (New Dehli)
#45, Top Floor
Okhla Industrial Area, Phase - III
New Dehli, 110020 India
Tel 1: +91-11-4055-2351
Tel 2: +91-11-4055-2353
Email: indiasales@power.com

INDIA (Bangalore)
#1, 14th Main Road
Vasanthangar
Bangalore, 560052 India
Tel 1: +91-80-4113-8020
Tel 2: +91-80-4113-8028
Fax: +91-80-4113-8023
Email: indiasales@power.com

INDIA (New Dehli)
#45, Top Floor
Okhla Industrial Area, Phase - III
New Dehli, 110020 India
Tel 1: +91-11-4055-2351
Tel 2: +91-11-4055-2353
Email: indiasales@power.com

INDIA (Mumbai)
Unit: 106-107, Sagar Tech Plaza-B
Sakinaka, Andheri Kurla Road
Mumbai, Maharashtra 400072 India
Tel 1: +91-22-4003-3700
Tel 2: +91-22-4003-3600
Email: indiasales@power.com

ITALY
Via Milanese 20
20099 Sesto San Giovanni (MI), Italy
Tel: +39-02-4550-8708
Email: eurosales@power.com

JAPAN
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama, Kohoku-ku
Yokohama-shi, Kanagawa
Japan 222-0033
Tel: +81-45-471-1021
Fax: +81-45-471-3717
Email: japansales@power.com

KOREA
RM602, 6FL, 22
Teheran-ro 87-gil, Gangnam-gu
Seoul, 06164 Korea
Tel: +82-2-2016-6610
Fax: +82-2-2016-6630
Email: koreasales@power.com

SINGAPORE
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Tel 1: +65-6358-2160
Tel 2: +65-6358-4480
Fax: +65-6358-2015
Email: singaporesales@power.com

TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, 114 Taiwan
Tel: +886-2-2659-4570
Fax: +886-2-2659-4550
Email: taiwansales@power.com

UNITED KINGDOM
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge, CB4 1YG United Kingdom
Tel: +44-7823-557-484
Email: eurosales@power.com

WEB SITE
www.power.com/igbt-driver