2SC0435T2F1-17 and 2SC0435T2F1C-17 Preliminary Datasheet

Dual-Channel SCALE™-2+ IGBT and MOSFET Driver Core

Abstract

The SCALE™-2+ dual-driver core 2SC0435T2F1-17 (Connector pin length of 5.84mm; increased EMI capability; lead free) / 2SC0435T2F1C-17 (Coated version using ELPEGUARD SL 1307 FLZ/2 from Lackwerke Peters) combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0435T2F1(C)-17 drives all usual high-power IGBT modules up to 1700V. The embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies are also supported.

The 2SC0435T2F1(C)-17 is the most compact driver core in its power range with a footprint of only 57.2 x 51.6mm and an insertion height of max. 20mm. It allows even the most restricted insertion spaces to be efficiently used. Compared with conventional drivers, the highly integrated SCALE-2+ chipset allows about 85% of components to be dispensed with. This advantage is impressively reflected in increased reliability.

The 2SC0435T2F1(C)-17 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, Advanced Active Clamping as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and the other secondary channel.

An output current of 35A and 4W drive power is available per channel, making the 2SC0435T2F1(C)-17 an ideal driver platform for universal usage in medium and high-power applications. The driver provides a gate voltage swing of +15V/-10V. The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level.

Its outstanding EMC allows safe and reliable operation in even hard industrial applications.

Product Highlights

✓ Ultra-compact dual-channel driver
✓ Highly integrated SCALE-2+ chipset
✓ Gate current ±35A, 4W output power per channel
✓ +15V/-10V gate driving
✓ Blocking voltages up to 1700V
✓ Safe isolation to EN 50178
✓ Short delay and low jitter
✓ Interface for 3.3V ... 15V logic level
✓ Advanced Active Clamping
✓ UL recognition E321757 for UL508C (NMMS2/8)
✓ UL recognition E346491 for UL60950-1 (NWGQ2/8)
✓ Lead free

Applications

✓ General purpose drives
✓ Uninterruptible power supplies (UPS)
✓ Solar and wind power converters
✓ Auxiliary converters for traction
✓ Electro/hybrid drive vehicles
✓ Driving parallel-connected IGBTs
✓ Medical (MRT, CT, X-Ray)
✓ Laser technology
Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and important information that apply to this product, please refer to “2SC0435T Description & Application Manual” on www.power.com/igbt-driver/go/2SC0435T.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Remarks</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{DC}</td>
<td>VDC to GND</td>
<td>0</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage V_{CC}</td>
<td>VCC to GND</td>
<td>0</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Logic input and output voltages</td>
<td>Primary side, to GND</td>
<td>-0.5</td>
<td>$V_{CC}+0.5$</td>
<td>V</td>
</tr>
<tr>
<td>SOx current</td>
<td>Failure condition, total current</td>
<td>20</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gate peak current I_{out}</td>
<td>Note 1</td>
<td>-35</td>
<td>+35</td>
<td>A</td>
</tr>
<tr>
<td>External gate resistance</td>
<td>Turn-on and turn-off</td>
<td>0.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Average supply current I_{DC}</td>
<td>Notes 2, 3</td>
<td>1050</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output power</td>
<td>Ambient temperature $<70^\circ$C (Notes 4, 5)</td>
<td>6</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient temperature 85°C (Note 4)</td>
<td>4</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Switching frequency f</td>
<td></td>
<td>100</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Test voltage (50Hz/1min.)</td>
<td>Primary to secondary (Note 14)</td>
<td>5000 $V_{AC\text{(eff)}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secondary to secondary (Note 14)</td>
<td>4000 $V_{AC\text{(eff)}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>dV/dt</td>
<td>$</td>
<td>Rate of change of input to output voltage</td>
<td>50</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Primary/secondary, secondary/secondary</td>
<td>1700 V_{peak}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Note 5</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Note 18</td>
<td>-40</td>
<td>50</td>
<td>°C</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>Only for 2SC0435T2F1C-17 (Note 17)</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{DC}</td>
<td>VDC to GND, IGBT mode</td>
<td>14.5</td>
<td>15</td>
<td>15.5</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage V_{CC}</td>
<td>VCC to GND</td>
<td>14.5</td>
<td>15</td>
<td>15.5</td>
<td>V</td>
</tr>
</tbody>
</table>

Electrical Characteristics (IGBT mode)

All data refer to $+25^\circ C$ and $V_{CC} = V_{DC} = 15V$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current I_{DC}</td>
<td>Without load</td>
<td></td>
<td>32</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current I_{CC}</td>
<td>$f = 0Hz$</td>
<td>22</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current I_{CC}</td>
<td>$f = 100kHz$</td>
<td>32</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Coupling capacitance C_{io}</td>
<td>Primary to output, total</td>
<td>22</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Supply Monitoring</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply threshold V_{CC}</td>
<td>Primary side, clear fault</td>
<td>11.9</td>
<td>12.6</td>
<td>13.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Primary side, set fault (Note 11)</td>
<td>11.3</td>
<td>12.0</td>
<td>12.7</td>
<td>V</td>
</tr>
<tr>
<td>Monitoring hysteresis</td>
<td>Primary side, set/clear fault</td>
<td>0.35</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply threshold $V_{ISOx-V_{Ex}}$</td>
<td>Secondary side, clear fault</td>
<td>12.1</td>
<td>12.6</td>
<td>13.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Secondary side, set fault (Note 12)</td>
<td>11.5</td>
<td>12.0</td>
<td>12.5</td>
<td>V</td>
</tr>
<tr>
<td>Monitoring hysteresis</td>
<td>Secondary side, set/clear fault</td>
<td>0.35</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply threshold $V_{Ex-V_{COMx}}$</td>
<td>Secondary side, clear fault</td>
<td>5</td>
<td>5.15</td>
<td>5.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Secondary side, set fault (Note 12)</td>
<td>4.7</td>
<td>4.85</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Monitoring hysteresis</td>
<td>Secondary side, set/clear fault</td>
<td>0.15</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic Inputs and Outputs</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bias current</td>
<td>$V(INx) > 3V$</td>
<td>190</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Turn-on threshold</td>
<td>$V(INx)$</td>
<td>2.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Turn-off threshold</td>
<td>$V(INx)$</td>
<td>1.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SOx output voltage</td>
<td>Failure condition, $I(SOx) < 20mA$</td>
<td>0.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short-Circuit Protection</th>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current through pin $REFx$</td>
<td>$R(REFx, VEx) < 70k\Omega$</td>
<td>150</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Minimum response time</td>
<td>Note 9</td>
<td>1.2</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Minimum blocking time</td>
<td>Note 10</td>
<td>9</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
</tbody>
</table>

www.power.com/igbt-driver
Preliminary Data Sheet

Timing Characteristics

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay $t_{(on)}$</td>
<td>Note 6</td>
<td>75</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay $t_{(off)}$</td>
<td>Note 6</td>
<td>70</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Jitter of turn-on delay</td>
<td>Note 16</td>
<td>±3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Jitter of turn-off delay</td>
<td>Note 16</td>
<td>±3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output rise time $t_{(out)}$</td>
<td>Note 7</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output fall time $t_{(out)}$</td>
<td>Note 7</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Transmission delay of fault state</td>
<td>Note 13</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Isolation

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test voltage (50Hz/1s) Primary to secondary side</td>
<td>5000</td>
<td>5050</td>
<td>5100</td>
<td>V$_{\text{eff}}$</td>
</tr>
<tr>
<td>Test voltage (50Hz/1s) Secondary to secondary side</td>
<td>4000</td>
<td>4050</td>
<td>4100</td>
<td>V$_{\text{eff}}$</td>
</tr>
<tr>
<td>Partial discharge extinction volt. Primary to secondary side</td>
<td>1768</td>
<td>V$_{\text{peak}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial discharge extinction volt. Secondary to secondary side</td>
<td>1700</td>
<td>V$_{\text{peak}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creepage distance Primary to secondary side</td>
<td>15.7</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creepage distance Secondary to secondary side</td>
<td>12</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance distance Primary to secondary side</td>
<td>15.7</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance distance Secondary to secondary side</td>
<td>7.3</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking capacitance VISOx to VEx (Note 8)</td>
<td>9.4</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking capacitance VEx to COMx (Note 8)</td>
<td>9.4</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output voltage swing

The output voltage swing consists of two distinct segments. First, there is the turn-on voltage V_{GHx} between pins GHx and VEx. V_{GHx} is regulated and maintained at a constant level for all output power values and frequencies.

The second segment of the output voltage swing is the turn-off voltage V_{GLx}. V_{GLx} is measured between pins GLx and VEx. It is a negative voltage. It changes with the output power to accommodate the inevitable voltage drop across the internal DC/DC converter.

Output Voltage

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on voltage, V_{GHx} Any load condition</td>
<td>15.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx} No load</td>
<td>-10.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx} 1W output power</td>
<td>-9.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx} 4W output power</td>
<td>-9.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off voltage, V_{GLx} 6W output power</td>
<td>-9.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Footnotes to the Key Data

1) The maximum peak gate current refers to the highest current level occurring during the product lifetime. It is an absolute value and does also apply for short pulses.

2) The average supply input current is limited for thermal reasons. Higher values than specified by the absolute maximum rating are permissible (e.g. during power supply start up) if the average remains below the given value, provided the average is taken over a time period which is shorter than the thermal time constants of the driver in the application.

3) There is no means of actively controlling or limiting the input current in the driver. In the case of start-up with very high blocking capacitor values, or in case of short circuit at the output, the supply input current has to be limited externally.

4) The maximum output power must not be exceeded at any time during operation. The absolute maximum rating must also be observed for time periods shorter than the thermal time constants of the driver in the application.

5) An extended output power range is specified in the output power section for maximum ambient temperatures of 70°C. In that case, the absolute maximum rating for the operating temperature changes to (-40°C - 70°C) and the absolute maximum output power rating changes to 6W.

6) The delay time is measured between 50% of the input signal and 10% voltage swing of the corresponding output. The delay time is independent of the output loading.

7) Output rise and fall times are measured between 10% and 90% of the nominal output swing with an output load of 4.7Ω and 270nF. The values are given for the driver side of the gate resistors. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.

8) External blocking capacitors are to be placed between VIS0x and VEx as well as VEx and COMx for gate charges exceeding 3µC. Ceramic capacitors are recommended. A minimum external blocking capacitance of 3µF is recommended for every 1µC of gate charge beyond 3µC. Insufficient external blocking can lead to reduced driver efficiency and thus to thermal overload.

9) The minimum response time given is valid for the circuit given in the description and application manual (Fig. 7) with the values of table 1 (\(C_{ax} = 0\, \text{pF}, \, R_{thx} = 43\, \Omega\)).

10) The blocking time sets a minimum time span between the end of any fault state and the start of normal operation (remove fault from pin SOx). The value of the blocking time can be adjusted at pin TB. The specified blocking time is valid if TB is connected to GND.

11) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to both SOx outputs and the power semiconductors are switched off.

12) Undervoltage monitoring of the secondary-side supply voltage (VIS0x to VEx and VEx to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding SOx output.

13) Transmission delay of fault state from the secondary side to the corresponding primary status output.

14) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than 1200V\(_{\text{AC(eff)}}\) may lead to insulation degradation. No degradation has been observed over 1min. testing at 5000V\(_{\text{AC(eff)}}\). Every production sample shipped to customers has undergone 100% testing at the given value for 1s.

15) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.

16) Jitter measurements are performed with input signals INx switching between 0V and 5V referred to GND, with a corresponding rise time and fall time of 15ns.

17) The component surface temperature, which may strongly vary depending on the operating condition, must be limited to the given value for coated driver versions to ensure long-term reliability of the coating material.
Preliminary Data Sheet

18) The storage temperature inside the original package (1) or in case the coating material of coated products may touch external parts (2) must be limited to the given value. Otherwise, it is limited to 90°C.

RoHS Statement

On the basis of Annexes II and III of European Directive 2011/65/EC of 08 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), we hereby state that the products described in this datasheet do not contain lead (Pb), mercury (Hg), hexavalent chromium (Cr VI), cadmium (Cd), polibrometo of biphenyl (PBB) or polibrometo diphenyl ether (PBDE) in concentrations exceeding the restrictions set forth in Annex II of 2011/65/EC with due consideration of the applicable exemptions as listed in Annex III of 2011/65/EC.

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.
Ordering Information

Our international terms and conditions of sale apply.

<table>
<thead>
<tr>
<th>Type Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC0435T2F1-17</td>
<td>Dual-channel SCALE-2+ driver core (Connector pin length of 5.84mm, increased EMI capability, lead free)</td>
</tr>
<tr>
<td>2SC0435T2F1C-17</td>
<td>Dual-channel SCALE-2+ driver core (Connector pin length of 5.84mm, increased EMI capability, lead free, conformal coating)</td>
</tr>
</tbody>
</table>

Product home page: www.power.com/igbt-driver/go/2SC0435T

Refer to www.power.com/igbt-driver/go/nomenclature for information on driver nomenclature.

Information about Other Products

For other drivers, product documentation, and application support

Please click: www.power.com
Preliminary Data Sheet

Power Integrations Sales Offices

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-9200
Fax: +1-408-414-9765
Email: usasales@power.com

AMERICAS EAST
7360 McGinnis Ferry Road
Suite 225
Suwanee, GA 30024 USA
Tel: +1-678-957-0724
Fax: +1-678-957-0784
Email: usasales@power.com

AMERICAS WEST
5245 Hellyer Avenue
San Jose, CA 95138 USA
Tel: +1-408-414-8778
Fax: +1-408-414-3760
Email: usasales@power.com

GERMANY (AC-DC/LED Sales)
Lindwurmstrasse 114
80337 Munich, Germany
Tel: +49-89-5527-39100
Fax: +49-89-1228-5374
Email: eurosales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 1
59469 Ense, Germany
Tel: +49-2938-64-39990
Email: igbt-driver.sales@power.com

CHINA (Shanghai)
Room 2410, Charity Plaza
No. 88 North Caori Road
Shanghai, 200030 China
Tel: +86-21-6354-6323
Fax: +86-21-6354-6325
Email: chinasaies@power.com

CHINA (Shenzhen)
17/F, Hvac Building, No 2
Keji South 8th Road, Nanshan District
Shenzhen, 518057 China
Tel: +86-755-8672-8689
Fax: +86-755-8672-8690
Email: chinasaies@power.com

INDIA (Bangalore)
#1, 14th Main Road
Vasanthangar
Bangalore, 560052 India
Tel 1: +91-80-4113-8020
Tel 2: +91-80-4113-8028
Fax: +91-80-4113-8023
Email: indiasesales@power.com

INDIA (Mumbai)
Unit: 106-107, Sagar Tech Plaza-B
Sakinaka, Andheri Kurla Road
Mumbai, Maharashtra 400072 India
Tel 1: +91-22-4003-3700
Tel 2: +91-22-4003-3600
Email: indiasesales@power.com

INDIA (New Delhi)
#45, Top Floor
Okhla Industrial Area, Phase - III
New Delhi, 110020 India
Tel 1: +91-11-4055-2351
Tel 2: +91-11-4055-2353
Email: indiasesales@power.com

JAPAN
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama, Kohoku-ku
Yokohama-shi, Kanagawa
Japan 222-0033
Tel: +81-45-471-1021
Fax: +81-45-471-3717
Email: japansaies@power.com

KOREA
RM602, 6FL, 22
Teheran-ro 87-gil, Gangnam-gu
Seoul, 06164 Korea
Tel: +82-2-2016-6610
Fax: +82-2-2016-6630
Email: koreasales@power.com

ITALY
Via Milanese 20
20099 Sesto San Giovanni (MI), Italy
Tel: +39-02-4550-8708
Email: eurosales@power.com

SINGAPORE
51 Newton Road
#19-01/05 Goldhill Plaza
Singapore, 308900
Tel 1: +65-6358-2160
Tel 2: +65-6358-4480
Fax: +65-6358-2015
Email: singaporesales@power.com

TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, 114 Taiwan
Tel: +886-2-2659-4570
Fax: +886-2-2659-4550
Email: taiwansaies@power.com

UNITED KINGDOM
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge, CB4 1YG United Kingdom
Tel: +44-7823-557-484
Email: eurosales@power.com